The Pattern of Musculoskeletal Cancers in Pakistan

Sikander Munir Memon, Fayaz Hussain Mangi, Faheem Ahmed Memon, Champa Sushel, Abdul Ghani Shaikh, Tanweer Ahmed Shaikh

ABSTRACT

OBJECTIVE: The study aimed to assess the pattern of musculoskeletal cancers in the Pakistani population who visited NIMRA hospital situated at Jamshoro.

METHODOLOGY: It was an observational retrospective study conducted at the Nuclear Institute of Medicine and Radiotherapy (NIMRA) and LUMHS, Jamshoro, from August 2019 to December 2020. A total of 626 patients were selected for this study. The data regarding patients were sourced from NIMRA, LUMHS Jamshoro. All the patients of both genders and ages diagnosed at NIMRA with any cancer were included in the study. Patients who did not return for follow-up after their metastatic and laboratory tests were excluded from the study. A Chi-square test was conducted to assess the association between diagnosed cancers versus gender and age groups. The confidence interval was set at 95%, and the probability value ≤0.05 was statistically significant.

RESULTS: A total of 626 patients were selected for this study. Of them, 362 (57.8%) were males and 264 (42.2%) were females, with a mean age of 34.67 years and a standard deviation of 18.998. The most prevalent cancer is soft-tissue sarcoma (STS) 129 (20.6%), followed by chondrosarcoma 119 (19%), and osteosarcoma 91 (14.5%). Forty percent of the cancers were diagnosed as stage II, followed by stage III (22%), stage IV (22%) and stage-I (16%), respectively. A significant association between diagnosed cancers were found with gender (p=0.001) and age group (p=<0.001).

CONCLUSION: Soft-tissue sarcoma, chondrosarcoma, and osteosarcoma are the most common musculoskeletal cancers in the Pakistani population.

Key Words: Chondrosarcoma, Ewing sarcoma, Musculoskeletal Cancers, Osteosarcoma, Rhabdomyosarcoma, Soft-tissue sarcoma.

This article may be cited as: Memon SM, Mangi FH, Memon FA, Sushel C, Shaikh AG, Shaikh TA. The Pattern of Musculoskeletal Cancers in Pakistan. J Liaquat Uni Med Health Sci. 2022;21 (03):176-80. doi: 10.22442/jlumhs.2021.00870. Epub 2021 June 03.

INTRODUCTION

Musculoskeletal tumors may develop in bone or soft tissues, including muscles and cartilage.¹ They are called sarcomas when transformed into malignant, for instance, chondrosarcoma and osteosarcoma.² While musculoskeletal tumors are rare, the development of pathologic fractures is a significant concern with bone tumors. The most common malignant musculoskeletal children and tumors in adolescents are rhabdomyosarcoma, Ewing sarcoma and osteosarcoma.3

Over the last few decades, several factors have led to better patient outcomes. Patients are enrolled in clinical trials and receive multidisciplinary treatment from oncologists, radiation oncologists, physicians, pathologists, and radiologists. Studies using molecular targets and conventional chemotherapeutic agents have resulted in a greater understanding of molecular disease mechanisms, which could lead to better outcomes in the future.⁴ Furthermore, modern

Received:	19-03-2021
Revised:	17-05-2021
Accepted:	18-05-2021
Published Online:	03-06-2021

orthopaedic procedures, instruments, and new radiation oncology tools promise improved local management of primary tumors and reduced late side effects.⁵

Despite this improvement, patients must be monitored for the rest of their lives for the long-term effects of intensive chemotherapy and radiation therapy.⁶ A patient with a suspected soft tissue or bone tumour should be treated at a hospital where they can receive multidisciplinary care.⁷ Radiography, MRI, and/or CT are used to assess the primary tumor.⁸ When treating a child or adolescent who has recently been diagnosed with one of these cancers, it's essential to assemble a multidisciplinary team of surgeons and radiation oncologists as soon as possible so that treatment plans can move forward smoothly and local control schedule can be organized so that chemotherapy can begin as quickly as possible.⁹ The study's objective was to assess the pattern of musculoskeletal cancers in the Pakistani population who visited NIMRA hospital situated at Jamshoro.

METHODOLOGY

It was an observational retrospective study conducted

The Pattern of Musculoskeletal Cancers

at the Nuclear Institute of Medicine and Radiotherapy (NIMRA) and LUMHS, Jamshoro, from August 2019 to December 2020. A total of 626 patients were selected for this study. The data regarding patients were sourced from NIMRA, a leading referral and cancer treatment public hospital that offers financial assistance for diagnosis and treatment to patients from all over Pakistan on a need-basis. All the patients of both genders and ages diagnosed at NIMRA with any cancer were included in the study. Patients who did not return for follow-up after their metastatic and laboratory tests were excluded from the study.

Demographic characteristics such as gender, patient religion, profession, language, district, name of cancer diagnosed, site of cancer, stage of cancer, and age group were among the study variables obtained by the principal investigator in this study.

The data was entered and analyzed using SPSS (Statistical Package for Social Sciences) version 22.0. Frequency and percentage were calculated for qualitative variables such as the patient's occupation, language, district of patients, site of cancer, and type of MSK cancer diagnosed. In contrast, gender, the religion of the patient, stage of cancer and age group were presented as Pie charts or Bar charts. Quantitative data like age at diagnosis of cancer were presented as a histogram. The statistical test was Chi-square to assess the association between cancer diagnoses versus gender and age groups. The confidence interval was set at 95%, and the probability value ≤0.05 was statistically significant.

RESULTS

A total of 626 patients were selected for this study. Of them, 362 (57.8%) were males, and 264 (42.2) were females, with the mean age at the cancer diagnosis was 34.67 years with a Standard deviation of 18.998. Regarding the patients' occupations, most were housewives 149 (23.8%), followed by 112 (17.9%), labourers and others. At the same time, occupational data regarding 113 patients (18.1%) was not available.

The data regarding cancers diagnosed in the patients is presented in **Figure I**. The most prevalent cancer is Soft-tissue sarcoma (STS) 129 (20.6%), followed by Chondrosarcoma 119 (19%), and Osteosarcoma 91 (14.5%). Forty percent of the cancers were diagnosed as stage II, followed by stage III (22%), stage IV (22%) and stage-I (16%), respectively (**Figure II**).

According to the obtained data, most of the cancer patients were aged between 21 to 40 years, 219 (35%), 188 (30%) below the age of 20 years, 152

(24.3%), 41 to 60 years, 63 (10.1%) were 61 to 80 years, and only four patients (0.6%) were above 80 years of age (**Figure III**). **Table I** shows a significant association (p=0.001) between the gender of patients and cancer diagnosis. The association between age groups and the diagnosed cancers was also found statistically to be highly significant (p=<0.001).

FIGURE I: DISTRIBUTION OF THE CANCERS/ CARCINOMAS DIAGNOSED AMONG PATIENTS

FIGURE II: DISTRIBUTION OF THE STAGES OF CANCER (n=626)

FIGURE III: DISTRIBUTION OF THE AGE GROUPS (n=626)

Sikander Munir Memon, Fayaz Hussain Mangi, Faheem Ahmed Memon, Champa Sushel, Abdul Ghani Shaikh, Tanweer Ahmed Shaikh

TABLE I: ASSOCIATION BETWEEN THE DIAGNOSED CANCERS AND THE GENDER (n=626)

Cancer Diagnosed	Gender of Patient		Duralius
	Female	Male	P-value
Blue Cell Tumor	0	1	
Bone Tumor	2	4	
CA. Arm	1	0	
CA. Foot	2	5	
CA. Forearm	0	4	
CA. Forehead	1	0	
CA. Hand	0	1	
CA. Heel	0	1	
CA. HIP	0	1	
CA. Knee Joint	0	1	
CA. Leg	3	4	
CA. Mandible	5	2	
CA. Mastoid	1	0	
CA. MAXILLA	13	15	
CA. Popliteal Fossa	0	1	
CA. Right Knee	0	1	
CA. Sacrum	0	1	
CA. Shoulder	0	1	
CA. Thigh	7	6	
CA. Tibia	1	0	
Chondrosarcoma	45	74	0.001
Choriocarcinoma	29	0	
Ewing Sarcoma	20	36	
Fibrosarcoma	14	13	
Fibrous Histiocytoma	4	10	
Giant Cell Tumor	11	19	
Kaposi's Sarcoma	1	0	
Leiomyosarcoma	7	6	
Liposarcoma	0	2	
Malignant Fibrous Histiolymfoma	1	1	
Met.Ca. Bone	1	3	
Osteosarcoma	38	53	
Rhabdomyosarcoma	3	6	
Soft-Tissue Sarcoma	49	80	
Soft-Tissue Sarcoma Chest Wall	1	1	
Soft-Tissue Sarcoma Forearm	0	1	
Soft-Tissue Sarcoma RIGHT KNEE	1	0	
Soft-Tissue Sarcoma THIGH	1	0	
Spinal Sarcoma	0	1	
Spinal Tumor	0	1	
Synovial Sarcoma	2	6	

DISCUSSION

This study was designed to assess the pattern of musculoskeletal cancers in Pakistan. Our study found that the most common musculoskeletal cancer is STS. According to this study's incidence (1995-7), Karachi is a high-risk area for STS, ranking 4th for males and 10th for females among the 230 current registries.¹⁰ The incidence of STS in the Kaposi sarcoma population was equivalent to that of contemporary European and US people.¹¹ Males with Kaposi sarcoma had the highest incidence in Asian registries, while females with STS had the third highest incidence after registries in Israel and Manila. The South Asian population has one of the lowest rates of STS in the world.¹² In contrast to other epidemiological studies, which display a slight male predominance, the current research shows a higher male-to-female ratio. At the same time, age groups are more common amongst 21 to 40 years patients, followed by 41 to 60 years.

In the present study, the second most common cancer was chondrosarcoma, a cartilage cell cancer. Only 2 to 10% of all chondrosarcomas are of mesenchymal origin. In case reports and small series, approximately 600 cases of MCS have been reported, and only three series of 20 or more cases have been identified in English-language medical literature.¹³ Mesenchymal chondrosarcoma has been known for 58 years, but it continues to pose diagnostic and management difficulties owing to its rarity. To date, only a few case series have been written.¹⁴

The third most prevalent cancer in the present study found was osteosarcoma. Osteosarcoma is a malignant bone tumor that develops early in life. It's rare cancer in adults, accounting for less than 1% of all cancers diagnosed in the US yearly.15 There is a bimodal age distribution in osteosarcoma with an incidence in early adulthood and later over the age of 65.¹⁶ In the current study, it is more prevalent in males as compared to females, and a majority of the cases are diagnosed in the patients who are below 20 years of age. We could not find a later peak in incidence that matched epidemiological data from another institute in our region.¹⁷ The age and male preponderance, on the other hand, are related to global incidence rates.¹⁸ The lower end of the femur and the upper end of the tibia were the most common sites of initial disease. This accounted for 79.6% of the total incidences. Concurrently, pulmonary metastasis accounted for 64% of all metastatic cases at the time of diagnosis.19,20

Pakistan's health and development systems are overburdened by ineffective palliative care, which is largely unknown and ignored. Cancer treatment centres are concentrated in large cities, out of reach for the vast majority of the population. Pakistan has

The Pattern of Musculoskeletal Cancers

one of the highest ratios of health workers to the total population in the world (1:90 per million). The relatively small sample is the limitation of the study. Design studies with larger sample sizes and more study variables in future are recommended.

CONCLUSION

This study found musculoskeletal cancers to have significant associations with gender and age groups. It is also concluded that soft-tissue sarcoma, chondrosarcoma, and osteosarcoma are the most common musculoskeletal cancers in the Pakistani population.

Ethical permission: Liaquat University of Medical & Health Sciences Jamshoro, Medical Research Centre ERC Exemption letter No. LUMHS/MRC/643, dated: 18-03-2021.

Conflict of Interest: The authors have no conflict of interest to declare.

Financial Disclosure / Grant Approval: No funding agency was used for this research

Data Sharing Statement: The data supporting this study's findings are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

AUTHOR CONTRIBUTION

Memon SM: Manuscript Writing, Analysis and Results Interpretation

Mangi FH: Study Concept and Data Collection Memon FA: Data entry and Statistical Analysis Sushel C: Data Collection and Discussion

Shaikh AG: Data Collection, Organizing and Summarization

Shaikh TA: Study Design and Data Collection

REFERENCES

- Inuwa MM, Zakariyau LY, Ismail DI, Friday ES, Ibrahim AA, Mohammed AA. Overview of extremity musculoskeletal neoplasms at the Ahmadu Bello University Teaching Hospital Zaria, Nigeria. Ann Afr Med. 2017; 16(3): 141-4. doi: 10.4103/aam.aam_5_17.
- Evola FR, Costarella L, Pavone V, Caff G, Cannavò L, Sessa A et al. Biomarkers of osteosarcoma, chondrosarcoma, and ewing sarcoma. Front Pharmacol. 2017; 8: 150. doi: 10.338 9/fphar.2017.00150.
- Redondo A, Bagué S, Bernabeu D, Ortiz-Cruz E, Valverde C, Alvarez R et al. Malignant bone tumors (other than Ewing's): clinical practice guidelines for diagnosis, treatment and follow-up by Spanish Group for Research on Sarcomas (GEIS). Cancer Chemother Pharmacol. 2017; 80 (6): 1113-31.

- Bukowski K, Kciuk M, Kontek R. Mechanisms of multidrug resistance in cancer chemotherapy. Int J Mol Sci. 2020; 21(9). 3233. doi: 10.3390/ijms 21093233.
- 5. Chen HHW, Kuo MT. Improving radiotherapy in cancer treatment: Promises and challenges. Oncotarget. 2017; 8(37): 62742-58.
- 6. Cleveland Clinic. Radiation Therapy Side Effects: Hair Loss. 2021; 1–10.
- Misaghi A, Goldin A, Awad M, Kulidjian AA. Osteosarcoma: a comprehensive review. Sicot J. 2018; 4: 12. doi: 10.1051/sicotj/2017028.
- Van der Pol CB, Lim CS, Sirlin CB, McGrath TA, Salameh JP, Bashir MR et al. Accuracy of the Liver Imaging Reporting and Data System in Computed Tomography and Magnetic Resonance Image Analysis of Hepatocellular Carcinoma or Overall Malignancy-A Systematic Review. Gastroenterology. 2019; 156(4): 976–86.
- Heymach J, Krilov L, Alberg A, Baxter N, Chang SM, Corcoran R et al. Clinical cancer advances 2018: Annual report on progress against cancer from the American Society of Clinical Oncology. J Clin Oncol. 2018; 36(10): 1020-44.
- 10. Cancer incidence in five continents. Volume VIII. IARC Sci Publ. 2002; (155): 1-781.
- Amadeo Brice, Penel N, Coindre JM, Raycoquard I, Ligier K, Delafosse P et al. Incidence and time trends of sarcoma (2000-2013): results from the French Network of Cancer registries (FRANCIM). BMC Cancer. 2020; 20(1): 190. doi: 10.1186/s12885-020-6683-0.
- Bhurgri Y, Bhurgri H, Pervez S, Kayani N, Usman A, Bashir I et al. Epidemiology of soft tissue sarcomas in Karachi South, Pakistan (1995-7). Asian Pacific J Cancer Prev. 2008; 9(4): 709–14.
- Raza M, Hussain M, Uddin N, Akhter N, Hassan U. Mesenchymal Chondrosarcoma, Clinicopathological Characteristics of an Uncommon Tumor. J Cytol Histol. 2018; 09(3): 1000505.
- Shakked RJ, Geller DS, Gorlick R, Dorfman HD. Mesenchymal chondrosarcoma : Clinicopathologic study of 20 cases. Arch Pathol Lab Med. 2012; 136(1): 61-75.
- 15. Mirabello L, Troisi RJ, Savage SA. Osteosarcoma incidence and survival rates from 1973 to 2004: Data from the surveillance, epidemiology, and end results program. Cancer. 2009; 115(7): 1531-43.
- Imtiaz S, Kazmi A. Patterns of care and outcomes of adult osteosarcoma in a tertiary care cancer centre in Pakistan. J Pak Med Assoc. 2014; 64 (10): 1166-70.
- 17. Qureshi A, Ahmad Z, Azam M, Idrees R. Epidemiological data for common bone sarcomas. Asian Pacific J Cancer Prev. 2010; 11(2): 393-5.
- 18. Mirabello L, Troisi RJ, Savage SA. International

Sikander Munir Memon, Fayaz Hussain Mangi, Faheem Ahmed Memon, Champa Sushel, Abdul Ghani Shaikh, Tanweer Ahmed Shaikh

osteosarcoma incidence patterns in children and adolescents, middle ages and elderly persons. Int J Cancer. 2009; 125(1): 229-34.

 Chen F, Miyahara R, Bando T, Okubo K, Watanabe K, Nakayama T, et al. Prognostic factors of pulmonary metastasectomy for osteosarcomas of the extremities. Eur J Cardiothoracic Surg. 2008; 34(6): 1235-9.

 Aljubran AH, Griffin A, Pintilie M, Blackstein M. Osteosarcoma in adolescents and adults: Survival analysis with and without lung metastases. Ann Oncol. 2009; 20(6): 1136-41.

AUTHOR AFFILIATION:

Dr. Sikander Munir Memon (Corresponding Author) Research Officer, Medical Research Center Liaquat University of Medical & Health Sciences (LUMHS), Jamshoro, Sindh-Pakistan. Email: drsikandermemon@gmail.com

Dr. Fayaz Hussain Mangi

PhD Scholar Nuclear Institute of Medicine and Radiotherapy (NIMRA) Jamshoro, Sindh-Pakistan.

Dr. Faheem Ahmed Memon

Associate Professor Department of Orthopedics LUMHS, Jamshoro, Sindh-Pakistan.

Dr. Champa Sushel

Associate Professor Department of General Surgery LUMHS, Jamshoro, Sindh-Pakistan.

Dr. Abdul Ghani Shaikh

Assistant Professor Science of Dental Materials LUMHS, Jamshoro, Sindh-Pakistan.

Dr. Tanweer Ahmed Shaikh

Associate Professor Department of Pathology LUMHS, Jamshoro, Sindh-Pakistan.

2022 © This is an Open Access article distributed under the terms of the Creative Commons Attribution – Non-Commercial 4.0 International License, which permits unrestricted use, distribution & reproduction in any medium provided that the original work is cited properly.